

Anti-HCK Rabbit Polyclonal Antibody

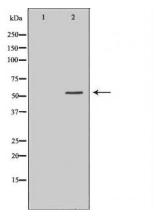
Catalog No.	EM55471-01	EM55471-02		
Size	50µl	100µl		
Species reactivity:	Human Mouse Rat	Molecular Weight:	57KD	

Background: FHck (hemopoietic cell kinase) is a protein tyrosine kinase of the Src family prominently expressed in the lymphoid and myeloid lineages of hemopoiesis (1). It participates in transducing a variety of extracellular signals, which ultimately affect cellular processes including proliferation, differentiation and migration. The well-defined modular structure of Hck comprises a relatively divergent, NH2-terminal unique domain, which is subject to post-translational lipid modifications thereby targeting Hck to the plasma membrane. Src homology 3 (SH3) and 2 (SH2) domains, and a tyrosine kinase catalytic domain follow the unique domain. The catalytic activity of Hck is regulated, both positively and negatively, by tyrosine phosphorylation of highly conserved tyrosine (Y) residues. Phosphorylation of a single conserved Tyr499 residue in the COOH terminus of Hck by the protein kinase Csk renders Hck inactive as a result of an intramolecular interaction between the phosphorylated tyrosine (pY) residue and its own SH2 domain. Disruption of this interaction, either as a result of dephosphorylation, or substitution of the COOH-terminal regulatory Y residue with phenylalanine (F; e.g., HckY499F), or COOH-terminal truncation mutations as observed in the virally transduced v-Src oncoprotein, results in constitutive activation of Hck. In contrast to phosphorylation of the COOH-terminal regulatory tyrosine residue, autophosphorylation of a tyrosine residue (Tyr388) within the kinase domain of Hck acts to positively regulate its catalytic activity. Thus, activation of Hck requires both disruption of the COOH-terminal regulatory tyrosine-SH2 domain interaction and autophosphorylation of the regulatory tyrosine residue within the kinase domain (2, 3). The dysfunction or dysregulation of Hck may contribute to the pathogenesis of some human leukemias (4).

All Names: JTK9

Immunogen: Recombinant proteinof human HCK

Specificity: HCK Antibody detects endogenous levels of total HCK


Application: WB 1:1,000-1:3000 IHC 1:20-1:200

Optimal dilutions/concentrations should be determined by the end user.

Form: Liquid ,1mg/ml

Storage buffer: PBS, pH 7.4, containing 0.02% **sodium azide** as Preservative and 50% Glycerol.

Storage: Store at -20°C. Do not aliquot the antibody.

Western blot analysis of extracts of Rajicell lines, using HCK antibody.